On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition

R. V. Namm, G. Woo

2001, 1, . 7780

The finite element method are investigated for solution of Signorini's problem.


( PDF)

[1] L. A. Oganesian and L. A. Rukhovets, Variationaly-difference methods for solution of ellliptic equations, pabl. AS Arm. SSR, Erevan, 1979.
[2] G. I. Marchuk and V. I. Agoshkov, Introduction to projectively-grid methods, Nauka, M., 1981.
[3] I. Babushka and H. S. Oh, The p-version of the finite element method for domains with corners and for infinite domains, Numer. Methods PDEs, 6:4 (1990), 371392.
[4] S. Brenner, Multigrid methods for the computation of singular solutions and stress intensity factor I: Corner singularities, Math. Comp., 226:68 (1999), 559583.
[5] S. Kim, G. Woo and T. Park, A note on a finite element method dealing with corner singularities, Korea J. Comput. and Appl. Math., 7:2 (2000), 373386.
[6] R. Glowinski, Numerical method for nonlinear variational problem, Springer, New York, 1984.
[7] I. Glavac?ek, J. Haslinger, I. Nec?as, J. Lovis?ek, Nomerical solution of variational inequalities, Springer, Berlin Heideberg New York, 1988.
[8] G. Dovaut, J. L. Lions, Les inequations en mecanique et en phisique, Dunod, Paris, 1972.
[9] S. G. Mikhlin, Linear equations in partial derivatives, Higher School, M., 1997.
[10] R. V. Namm, A. Ya. Zolotukhin, The finite element method for solution of Signorini's problem, CFD Journal, 4:4 (1996), 509515.
[11] R. V. Namm, Stable methods for ill-posed variational inequalities in mechanics, Lecture Notes in Economics and Mathematical Systems, 452, 1997, 214228.