FAR EASTERN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES

INSTITUTE OF APPLIED MATHEMATICS KHABAROVSK DIVISION

On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition |

R. V. Namm, G. Woo |

2001, issue 1, P. |

Abstract |

The finite element method are investigated for solution of Signorini's problem. |

Keywords: |

Download the article (PDF-file) |

## References |

[1] L. A. Oganesian and L. A. Rukhovets, Variationaly-difference methods for solution of ellliptic equations, pabl. AS Arm. SSR, Erevan, 1979. [2] G. I. Marchuk and V. I. Agoshkov, Introduction to projectively-grid methods, Nauka, M., 1981. [3] I. Babushka and H. S. Oh, “The p-version of the finite element method for domains with corners and for infinite domains”, Numer. Methods PDEs, 6:4 (1990), 371–392. [4] S. Brenner, “Multigrid methods for the computation of singular solutions and stress intensity factor I: Corner singularities”, Math. Comp., 226:68 (1999), 559–583. [5] S. Kim, G. Woo and T. Park, “A note on a finite element method dealing with corner singularities”, Korea J. Comput. and Appl. Math., 7:2 (2000), 373–386. [6] R. Glowinski, Numerical method for nonlinear variational problem, Springer, New York, 1984. [7] I. Glavac?ek, J. Haslinger, I. Nec?as, J. Lovis?ek, Nomerical solution of variational inequalities, Springer, Berlin –Heideberg –New York, 1988. [8] G. Dovaut, J. L. Lions, Les inequations en mecanique et en phisique, Dunod, Paris, 1972. [9] S. G. Mikhlin, Linear equations in partial derivatives, Higher School, M., 1997. [10] R. V. Namm, A. Ya. Zolotukhin, “The finite element method for solution of Signorini's problem”, CFD Journal, 4:4 (1996), 509–515. [11] R. V. Namm, “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, 1997, 214–228. |