. . , . .

2011, 2, . 155180


. . , , .

:
, , ,

( PDF)

[1] L. Anand, On Hencky's approximate strain-energy function for moderate deformations, Trans. ASME, J. Appl. Mech., 46:1 (1979), 7882.
[2] L. Anand, Moderate deformations in extension-torsion of incompressible isotropic elastic materials, J. Mech. Phys. Solids., 34 (1986), 293304.
[3] . . , . . , , . . . ., 7:3 (2004), 2143.
[4] J. Arghavani, F. Auricchio, R. Naghdabadi, A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys, Int. J. Plasticity, 27 (2011), 940961.
[5] A. F. M. Arif, T. Pervez, M. P. Mughal, Performance of a fnite element procedure for hyperelastic-viscoplastic large deformation problems, Finite Elements in Analysis and Design, 34 (2000), 89112.
[6] M. Asghari, S. Naghdabadi, S. Sohrabpour, Some basis-free expressions for stresses conjugate to Hill's strains through solving the tensor equation AX+XA=C, Int. J. Solids Struct., 45 (2008), 35843595.
[7] M. Asghari, Basis free expressions for the stress rate of isotropic elastic materials in the cases of coalescent principal stretches, Int. J. Solids Struct., 47 (2010), 611613.
[8] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River, N.J., 1996.
[9] R. C. Batra, Linear constitutive relations in isotropic finite elasticity, J. Elast., 51 (1998), 243245.
[10] R. C. Batra, Comparison of results from four linear constitutive relations in isotropic finite elasticity, Int. J. Non-Linear Mech., 36 (2001), 421432.
[11] A. Bertram, Elasticity and Plasticity of Large Deformations. An Introduction, 2nd ed., Springer, Berlin, 2008.
[12] J. Bonet, R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ. Press, Cambridge, 1997.
[13] O. T. Bruhns, A. Meyers, H. Xiao, Hencky's elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods, Arch. Mech., 52:45 (2000), 489509.
[14] O. T. Bruhns, A. Meyers, H. Xiao, Finite Bending of a Rectangular Block of an Elastic Hencky Material, J. Elast., 66 (2002), 237256.
[15] . . , , , ., 1986.
[16] A. Chiskis, Linear stress-strain relations in nonlinear elasticity, Acta Mech., 146 (2001), 109113.
[17] J. C. Criscione, J. D. Humphrey, A. S. Douglas, W. C. Hunter, An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solids., 48 (2000), 24452465.
[18] J. C. Criscione, Direct tensor expression for natural strain and fast, accurate approximation, Computers and Structures, 80 (2002), 18951905.
[19] A. Curnier, L. Rakotomanana, Generalized strain and stress measures: critical survey and new results, Eng. Trans., 39:34 (1991), 461538.
[20] A. Curnier, Computational Methods in Solid Mechanics, Kluwer Academic Publ., Dordrecht, 1994.
[21] A. Curnier, Ph. Zysset, A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations, Int. J. Solids Structures, 43 (2006), 30573086.
[22] H. Darijani, R. Naghdabadi, Hyperelastic materials behavior modeling using consistent strain energy density functions, Acta Mech., 213 (2010), 235254.
[23] H. Darijani, R. Naghdabadi, Constitutive modeling of solids at finite deformation using a second-order stress-strain relation, Int. J. Engng Sci., 48 (2010), 223236.
[24] J. Diani, P. Gilormini, Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials, J. Mech. Phys. Solids., 53 (2005), 25792596.
[25] P. Dluzewski, Anisotropic hyperelasticity based upon general strain measures, J. Elast., 60 (2000), 119129.
[26] G. Dui, Time rates of Hill's strain tensors, J. Elast., 54 (1999), 129140.
[27] G. Dui, Q. Ren, Z. Shen, Conjugate stresses to Seth's strain class, Mech. Res. Commun., 27:5 (2000), 539542.
[28] G. Dui, Y. Chen, Basis-free representations for the stress rate of isotropic materials, Int. J. Solids Struct., 41 (2004), 48454860.
[29] G. Dui, Some basis-free formulae for the time rate and conjugate stress of logarithmic strain tensor, J. Elast., 83 (2006), 113151.
[30] G. Dui, Z. Wang, Q. Ren, Explicit formulations of tangent stiffness tensors for isotropic materials, Int. J. Numer. Meth. Engng., 69 (2007), 665675.
[31] K. Farahani, R. Naghdabadi, Conjugate stresses of the Seth-Hill strain tensors, Int. J. Solids Struct., 37 (2000), 52475255.
[32] K. Farahani, R. Naghdabadi, Basis free relations for the conjugate stresses of the strains based on the right stretch tensor, Int. J. Solids Struct., 40 (2003), 58875900.
[33] K. Farahani, H. Bahai, Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth-Hill strain measures, Int. J. Engng Sci., 42 (2004), 2941.
[34] J. E. Fitzgerald, A tensorial Hencky measure of strain and strain rate for finite deformations, J. Appl. Phys., 51:10 (1980), 51115115.
[35] Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1965.
[36] G. Gabriel, K. J. Bathe, Some computational issues in large strain elasto-plastic analysis, Computers and Structures, 56:2/3 (1995), 249267.
[37] M. G. D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework, Comput. Methods Appl. Mech. Eng., 193 (2004), 33773401.
[38] K. Ghavam, R. Naghdabadi, Hardening materials modeling in finite elastic-plastic deformations based on the stretch tensor decomposition, Materials & Design, 29 (2008), 161172.
[39] . . , - , , 2:1 (2009), 1937.
[40] . . , , , 4:1 (2011), 2535.
[41] K. Hashiguchi, Elastoplasticity Theory, Springer, Berlin, 2009.
[42] P. Haupt, Ch. Tsakmakis, Stress tensors associated with deformation tensors via duality, Arch. Mech., 48:2 (1996), 347384.
[43] K. Heiduschke, The logarithm strain space description, Int. J. Solids Struct., 32 (1995), 10471062.
[44] R. Hill, On constitutive inequalities for simple materials I, J. Mech. Phys. Solids., 16:4 (1968), 229242.
[45] R. Hill, Aspects of invariance in solid mechanics, Advances in Applied Mechanics, 18, Academic Press, New York, 175.
[46] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Egineering, Wiley, Chichester et al., 2000.
[47] C. O. Horgan, J. G. Murphy, A generalization of Hencky's strain-energy density to model the large deformations of slightly compressible solid rubbers, Mechanics of Materials, 41 (2009), 943950.
[48] M. Itskov, On the theory of fourth-order tensors and their applications in computational mechanics, Comput. Methods Appl. Mech. Eng., 189 (2000), 419438.
[49] M. Itskov, Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), Springer, Berlin, 2007.
[50] C. S. Jog, The explicit determination of the logarithm of a tensor and its derivatives, J. Elast., 93 (2008), 141148.
[51] P. A. Kakavas, A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach, Journal of Applied Polymer Science, 77 (2000), 660672.
[52] O. Kintzel, Y. Basar, Fourth-order tensors - tensor differentiation with applications to continuum mechanics. P. I: Classical tensor analysis, ZAMM, 86:4 (2006), 291311.
[53] S. N. Korobeinikov, V. P. Agapov, M. I. Bondarenko, A. N. Soldatkin, The general purpose nonlinear finite element structural analysis program PIONER, Int. Conf. on Numerical Methods and Applications, Sofia, 1989, 228233.
[54] . . , , - , , 2000.
[55] . . , , , 41:3 (2000), 513518.
[56] S. N. Korobeynikov, Objective tensor rates and applications in formulation of hyperelastic relations, J. Elast., 93 (2008), 105140.
[57] S. N. Korobeynikov, Families of continuous spin tensors and applications in continuum mechanics, Acta Mech., 216:14 (2011), 301332.
[58] I-Sh. Liu, On the transformation property of the deformation gradient under a change of frame, J. Elast., 71 (2003), 7380.
[59] C. P. Luehr, M. B. Rubin, The significance of projection operators in the spectral representatin of symmetric second order tensors, Comput. Methods Appl. Mech. Eng., 84 (1990), 243246.
[60] . . , , , ., 1980.
[61] C.-S. Man, Z.-H. Guo, A basis-free formula for time rate of Hill's strain tensor, Int. J. Solids Struct., 30:20 (1993), 28192842.
[62] MARC Users Guide, v. A, Theory and Users Information, MSC. Software Corporation, Santa Ana (CA), 2010.
[63] J. E. Marsden, T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1983.
[64] A. Meyers, H. Xiao, O. T. Bruhns, Choice of objective rate in single parameter hypoelastic deformation cycles, Computers and Structures, 84 (2006), 11341140.
[65] C. Miehe, Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Meth. Engng., 37 (1994), 19812004.
[66] C. Miehe, Comparison of two algorithms for the computation of fourth-order isotropic tensor functions, Computers and Structures, 66:1 (1998), 3743.
[67] C. Miehe, M. Lambrecht, Algorithms for computation of stresses and elasticity moduli in terms of SethHills family of generalized strain tensors, Comm. Numer. Meth. Engng., 17 (2001), 337353.
[68] C. Miehe, Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Comput. Methods Appl. Mech. Engrg., 191 (2002), 5383-5425.
[69] C. Miehe, S. Go?ktepe, J. M. Diez, Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space, Int. J. Solids Structures, 46 (2009), 181-202.
[70] C. Miehe, J. M. Diez, S. Go?ktepe, L.-M. Scha?nzel, Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory, Int. J. Solids Structures, 48 (2011), 1799-1817.
[71] K. N. Morman, Jr., The generalized strain measure with application to nonhomogeneous deformations in rubber-like solids, Trans. ASME, J. Appl. Mech., 53 (1986), 726728.
[72] F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York, 1951.
[73] J. J. Nader, Linear response in finite elasticity, J. Elast., 73 (2003), 165172.
[74] R. Naghdabadi, M. Yeganeh, A. R. Saidi, Application of corotational rates of the logarithmic strain in constitutive modeling of hardening materials at finite deformations, Int. J. Plasticity, 21 (2005), 15461567.
[75] D. W. Nicholson, Tangent modulus matrix for finite element analysis of hyperelastic materials, Acta Mech., 112 (1995), 187201.
[76] . . , , , 15:6 (1951), 709722.
[77] . . , , , ., 1958.
[78] R. W. Ogden, Non-linear Elastic Deformations, Ellis Horwood, Chichester, 1984.
[79] F. Peyraut, Z.-Q. Feng, Q.-C. He, N. Labed, Robust numerical analysis of homogeneous and non-homogeneous deformations, Appl. Num. Math., 59 (2009), 14991514.
[80] G. Piero, Some properties of the set of fourth-order tensors, with application to elasticity, J. Elast., 9:3 (1979), 245261.
[81] J. Plesek, A. Kruisova, Formulation, validation and numerical procedures for Hencky's elasticity model, Computers and Structures, 84 (2006), 11411150.
[82] . . , . . , . . , , , ., 1986.
[83] W. Prager, Einfu?hrung in die Kontinuumsmechanik, Birkha?user Verlag, Basel, 1961; . .: . , , - . ., ., 1963.
[84] C. Sansour, On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues, Int. J. Solids Struct., 38 (2001), 92219232.
[85] M. Scheidler, Time rates of generalized strain tensors. Part I: Component formulas, Mechanics of Materials, 11 (1991), 199210.
[86] A. V. Shutov, R. Krei?ig, Application of a coordinate-free tensor formalism to the numerical implementation of a material model, ZAMM, 88:11 (2008), 888909.
[87] J. C. Simo, T. J. R. Hughes, Computational Inelasticity, Springer, Berlin, 1998.
[88] C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, v. III/3, Handbuch der Physik, ed. S. Flu?gge, Springer, New York, 1965.
[89] . . , . . , . . , , , , 1998.
[90] K. Y. Volokh, Comments and authors' reply on Linear stress-strain relations in nonlinearelasticity by A. Chiskis and R. Parnes (Acta Mech. 146, 109113, 2001), Acta Mech., 171 (2004), 241245.
[91] G. Weber, L. Anand, Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Eng., 79 (1990), 173202.
[92] H. Xiao, Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain, Int. J. Solids Struct., 32:22 (1995), 33273340.
[93] H. Xiao, O. T. Bruhns, A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate, Acta Mech., 124 (1997), 89105.
[94] H. Xiao, O. T. Bruhns, A. Meyers, Hypo-elasticity model based upon the logarithmic stress rate, J. Elast., 47 (1997), 5168.
[95] H. Xiao, O. T. Bruhns, A. Meyers, Strain rates and material spins, J. Elast., 52 (1998), 141.
[96] H. Xiao, O. T. Bruhns, A. Meyers, Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures, Arch. Mech., 50:6 (1998), 10151045.
[97] H. Xiao, O. T. Bruhns, A. Meyers, Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress, Mechanics Research Communications, 25:1 (1998), 5967.
[98] H. Xiao, O. T. Bruhns, A. Meyers, Existence and uniqueness of the integrable-exactly hypoelastic equation $\r\tau^*=\lambda(\tr D)I+2\mu D$ and its significance to finite inelasticity, Acta Mech., 138 (1999), 3150.
[99] H. Xiao, O. T. Bruhns, A. Meyers, A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity, J. Elast., 56 (1999), 5993.
[100] H. Xiao, O. T. Bruhns, A. Meyers, The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate, Proc. R. Soc. Lond. A., 456 (2000), 18651882.
[101] H. Xiao, O. T. Bruhns, A. Meyers, Basis issues concerning finite strain measures and isotropic stress-deformation relations, J. Elast., 67 (2002), 123.
[102] H. Xiao, L. S. Chen, Hencky's elasticity model and linear stress-strain relations in isotropic finite hyperelasticity, Acta Mech., 157 (2002), 5160.
[103] H. Xiao, L. S. Chen, Hencky's logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity, Int. J. Solids Struct., 40 (2003), 14551463.
[104] H. Xiao, O. T. Bruhns, A. Meyers, Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky