Far Eastern Mathematical Journal

To content of the issue


Lagrangian formulation of Hencky's hyperelastic material


S. N. Korobeinikov, A. A. Oleinikov

2011, issue 2, Ñ. 155–180


Abstract
New representation of the fourth order elasticity tensor for Hencky's hyperelastic isotropic material is obtained. Compactness of this representation is followed by use of eigenprojections of the right Cauchy – Green strain tensor. It is shown that the obtained elasticity tensor possesses both minor symmetries, and the major symmetry.

Keywords:
isotropic hyperelasticity, Hencky's material, elasticity tensor, eigenprojections

Download the article (PDF-file)

References

[1] L. Anand, “On Hencky's approximate strain-energy function for moderate deformations”, Trans. ASME, J. Appl. Mech., 46:1 (1979), 78–82.
[2] L. Anand, “Moderate deformations in extension-torsion of incompressible isotropic elastic materials”, J. Mech. Phys. Solids., 34 (1986), 293–304.
[3] B. D. Annin, S. N. Korobeinikov, “Obobshchennye sopriazhennye tenzory napriazhenii i deformatsii”, Sib. zhurn. ind. mat., 7:3 (2004), 21–43.
[4] J. Arghavani, F. Auricchio, R. Naghdabadi, “A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys”, Int. J. Plasticity, 27 (2011), 940–961.
[5] A. F. M. Arif, T. Pervez, M. P. Mughal, “Performance of a fnite element procedure for hyperelastic-viscoplastic large deformation problems”, Finite Elements in Analysis and Design, 34 (2000), 89–112.
[6] M. Asghari, S. Naghdabadi, S. Sohrabpour, “Some basis-free expressions for stresses conjugate to Hill's strains through solving the tensor equation AX+XA=C”, Int. J. Solids Struct., 45 (2008), 3584–3595.
[7] M. Asghari, “Basis free expressions for the stress rate of isotropic elastic materials in the cases of coalescent principal stretches”, Int. J. Solids Struct., 47 (2010), 611–613.
[8] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River, N.J., 1996.
[9] R. C. Batra, “Linear constitutive relations in isotropic finite elasticity”, J. Elast., 51 (1998), 243–245.
[10] R. C. Batra, “Comparison of results from four linear constitutive relations in isotropic finite elasticity”, Int. J. Non-Linear Mech., 36 (2001), 421–432.
[11] A. Bertram, Elasticity and Plasticity of Large Deformations. An Introduction, 2nd ed., Springer, Berlin, 2008.
[12] J. Bonet, R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ. Press, Cambridge, 1997.
[13] O. T. Bruhns, A. Meyers, H. Xiao, “Hencky's elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods”, Arch. Mech., 52:4–5 (2000), 489–509.
[14] O. T. Bruhns, A. Meyers, H. Xiao, “Finite Bending of a Rectangular Block of an Elastic Hencky Material”, J. Elast., 66 (2002), 237–256.
[15] K. F. Chernykh, Nelineinaia teoriia uprugosti v mashinostroitel'nykh raschetakh, Mashinostroenie, L., 1986.
[16] A. Chiskis, “Linear stress-strain relations in nonlinear elasticity”, Acta Mech., 146 (2001), 109–113.
[17] J. C. Criscione, J. D. Humphrey, A. S. Douglas, W. C. Hunter, “An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity”, J. Mech. Phys. Solids., 48 (2000), 2445–2465.
[18] J. C. Criscione, “Direct tensor expression for natural strain and fast, accurate approximation”, Computers and Structures, 80 (2002), 1895–1905.
[19] A. Curnier, L. Rakotomanana, “Generalized strain and stress measures: critical survey and new results”, Eng. Trans., 39:3–4 (1991), 461–538.
[20] A. Curnier, Computational Methods in Solid Mechanics, Kluwer Academic Publ., Dordrecht, 1994.
[21] A. Curnier, Ph. Zysset, “A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations”, Int. J. Solids Structures, 43 (2006), 3057–3086.
[22] H. Darijani, R. Naghdabadi, “Hyperelastic materials behavior modeling using consistent strain energy density functions”, Acta Mech., 213 (2010), 235–254.
[23] H. Darijani, R. Naghdabadi, “Constitutive modeling of solids at finite deformation using a second-order stress-strain relation”, Int. J. Engng Sci., 48 (2010), 223–236.
[24] J. Diani, P. Gilormini, “Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials”, J. Mech. Phys. Solids., 53 (2005), 2579–2596.
[25] P. Dluzewski, “Anisotropic hyperelasticity based upon general strain measures”, J. Elast., 60 (2000), 119–129.
[26] G. Dui, “Time rates of Hill's strain tensors”, J. Elast., 54 (1999), 129–140.
[27] G. Dui, Q. Ren, Z. Shen, “Conjugate stresses to Seth's strain class”, Mech. Res. Commun., 27:5 (2000), 539–542.
[28] G. Dui, Y. Chen, “Basis-free representations for the stress rate of isotropic materials”, Int. J. Solids Struct., 41 (2004), 4845–4860.
[29] G. Dui, “Some basis-free formulae for the time rate and conjugate stress of logarithmic strain tensor”, J. Elast., 83 (2006), 113–151.
[30] G. Dui, Z. Wang, Q. Ren, “Explicit formulations of tangent stiffness tensors for isotropic materials”, Int. J. Numer. Meth. Engng., 69 (2007), 665–675.
[31] K. Farahani, R. Naghdabadi, “Conjugate stresses of the Seth-Hill strain tensors”, Int. J. Solids Struct., 37 (2000), 5247–5255.
[32] K. Farahani, R. Naghdabadi, “Basis free relations for the conjugate stresses of the strains based on the right stretch tensor”, Int. J. Solids Struct., 40 (2003), 5887–5900.
[33] K. Farahani, H. Bahai, “Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth-Hill strain measures”, Int. J. Engng Sci., 42 (2004), 29–41.
[34] J. E. Fitzgerald, “A tensorial Hencky measure of strain and strain rate for finite deformations”, J. Appl. Phys., 51:10 (1980), 5111–5115.
[35] Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1965.
[36] G. Gabriel, K. J. Bathe, “Some computational issues in large strain elasto-plastic analysis”, Computers and Structures, 56:2/3 (1995), 249–267.
[37] M. G. D. Geers, “Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework”, Comput. Methods Appl. Mech. Eng., 193 (2004), 3377–3401.
[38] K. Ghavam, R. Naghdabadi, “Hardening materials modeling in finite elastic-plastic deformations based on the stretch tensor decomposition”, Materials & Design, 29 (2008), 161–172.
[39] A. I. Golovanov, “Konechno-elementnoe modelirovanie bol'shikh deformatsii giperuprugikh tel v terminakh glavnykh udlinenii”, Vychislitel'naia mekhanika sploshnykh sred, 2:1 (2009), 19–37.
[40] A. I. Golovanov, “Chislennoe modelirovanie bol'shikh deformatsii uprugoplasticheskikh tel v terminakh logarifmov glavnykh udlinenii”, Vychislitel'naia mekhanika sploshnykh sred, 4:1 (2011), 25–35.
[41] K. Hashiguchi, Elastoplasticity Theory, Springer, Berlin, 2009.
[42] P. Haupt, Ch. Tsakmakis, “Stress tensors associated with deformation tensors via duality”, Arch. Mech., 48:2 (1996), 347–384.
[43] K. Heiduschke, “The logarithm strain space description”, Int. J. Solids Struct., 32 (1995), 1047–1062.
[44] R. Hill, “On constitutive inequalities for simple materials — I”, J. Mech. Phys. Solids., 16:4 (1968), 229–242.
[45] R. Hill, “Aspects of invariance in solid mechanics”, Advances in Applied Mechanics, 18, Academic Press, New York, 1–75.
[46] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Egineering, Wiley, Chichester et al., 2000.
[47] C. O. Horgan, J. G. Murphy, “A generalization of Hencky's strain-energy density to model the large deformations of slightly compressible solid rubbers”, Mechanics of Materials, 41 (2009), 943–950.
[48] M. Itskov, “On the theory of fourth-order tensors and their applications in computational mechanics”, Comput. Methods Appl. Mech. Eng., 189 (2000), 419–438.
[49] M. Itskov, Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), Springer, Berlin, 2007.
[50] C. S. Jog, “The explicit determination of the logarithm of a tensor and its derivatives”, J. Elast., 93 (2008), 141–148.
[51] P. A. Kakavas, “A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach”, Journal of Applied Polymer Science, 77 (2000), 660–672.
[52] O. Kintzel, Y. Basar, “Fourth-order tensors - tensor differentiation with applications to continuum mechanics. P. I: Classical tensor analysis”, ZAMM, 86:4 (2006), 291–311.
[53] S. N. Korobeinikov, V. P. Agapov, M. I. Bondarenko, A. N. Soldatkin, “The general purpose nonlinear finite element structural analysis program PIONER”, Int. Conf. on Numerical Methods and Applications, Sofia, 1989, 228–233.
[54] S. N. Korobeinikov, Nelineinoe deformirovanie tverdykh tel, Iz-vo SO RAN, Novosibirsk, 2000.
[55] S. N. Korobeinikov, “Strogo sopriazhennye tenzory napriazhenii i deformatsii”, PMTF, 41:3 (2000), 513–518.
[56] S. N. Korobeynikov, “Objective tensor rates and applications in formulation of hyperelastic relations”, J. Elast., 93 (2008), 105–140.
[57] S. N. Korobeynikov, “Families of continuous spin tensors and applications in continuum mechanics”, Acta Mech., 216:1–4 (2011), 301–332.
[58] I-Sh. Liu, “On the transformation property of the deformation gradient under a change of frame”, J. Elast., 71 (2003), 73–80.
[59] C. P. Luehr, M. B. Rubin, “The significance of projection operators in the spectral representatin of symmetric second order tensors”, Comput. Methods Appl. Mech. Eng., 84 (1990), 243–246.
[60] A. I. Lur'e, Nelineinaia teoriia uprugosti, Nauka, M., 1980.
[61] C.-S. Man, Z.-H. Guo, “A basis-free formula for time rate of Hill's strain tensor”, Int. J. Solids Struct., 30:20 (1993), 2819–2842.
[62] MARC Users Guide, v. A, Theory and Users Information, MSC. Software Corporation, Santa Ana (CA), 2010.
[63] J. E. Marsden, T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1983.
[64] A. Meyers, H. Xiao, O. T. Bruhns, “Choice of objective rate in single parameter hypoelastic deformation cycles”, Computers and Structures, 84 (2006), 1134–1140.
[65] C. Miehe, “Aspects of the formulation and finite element implementation of large strain isotropic elasticity”, Int. J. Numer. Meth. Engng., 37 (1994), 1981–2004.
[66] C. Miehe, “Comparison of two algorithms for the computation of fourth-order isotropic tensor functions”, Computers and Structures, 66:1 (1998), 37–43.
[67] C. Miehe, M. Lambrecht, “Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors”, Comm. Numer. Meth. Engng., 17 (2001), 337–353.
[68] C. Miehe, “Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials”, Comput. Methods Appl. Mech. Engrg., 191 (2002), 5383–-5425.
[69] C. Miehe, S. Go?ktepe, J. M. Diez, “Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space”, Int. J. Solids Structures, 46 (2009), 181–-202.
[70] C. Miehe, J. M. Diez, S. Go?ktepe, L.-M. Scha?nzel, “Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory”, Int. J. Solids Structures, 48 (2011), 1799–-1817.
[71] K. N. Morman, Jr., “The generalized strain measure with application to nonhomogeneous deformations in rubber-like solids”, Trans. ASME, J. Appl. Mech., 53 (1986), 726–728.
[72] F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York, 1951.
[73] J. J. Nader, “Linear response in finite elasticity”, J. Elast., 73 (2003), 165–172.
[74] R. Naghdabadi, M. Yeganeh, A. R. Saidi, “Application of corotational rates of the logarithmic strain in constitutive modeling of hardening materials at finite deformations”, Int. J. Plasticity, 21 (2005), 1546–1567.
[75] D. W. Nicholson, “Tangent modulus matrix for finite element analysis of hyperelastic materials”, Acta Mech., 112 (1995), 187–201.
[76] V. V. Novozhilov, “O printsipakh obrabotki rezul'tatov staticheskikh ispytanii izotropnykh materialov”, PMM, 15:6 (1951), 709–722.
[77] V. V. Novozhilov, Teoriia uprugosti, Sudpromgiz, L., 1958.
[78] R. W. Ogden, Non-linear Elastic Deformations, Ellis Horwood, Chichester, 1984.
[79] F. Peyraut, Z.-Q. Feng, Q.-C. He, N. Labed, “Robust numerical analysis of homogeneous and non-homogeneous deformations”, Appl. Num. Math., 59 (2009), 1499–1514.
[80] G. Piero, “Some properties of the set of fourth-order tensors, with application to elasticity”, J. Elast., 9:3 (1979), 245–261.
[81] J. Plesek, A. Kruisova, “Formulation, validation and numerical procedures for Hencky's elasticity model”, Computers and Structures, 84 (2006), 1141–1150.
[82] A. A. Pozdeev, P. V. Trusov, Iu. I. Niashin, Bol'shie uprugoplasticheskie deformatsii, Nauka, M., 1986.
[83] W. Prager, Einfu?hrung in die Kontinuumsmechanik, Birkha?user Verlag, Basel, 1961; russ. per.: V. Prager, Vvedenie v mekhaniku sploshnykh sred, Izd-vo inostr. lit., M., 1963.
[84] C. Sansour, “On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues”, Int. J. Solids Struct., 38 (2001), 9221–9232.
[85] M. Scheidler, “Time rates of generalized strain tensors. Part I: Component formulas”, Mechanics of Materials, 11 (1991), 199–210.
[86] A. V. Shutov, R. Krei?ig, “Application of a coordinate-free tensor formalism to the numerical implementation of a material model”, ZAMM, 88:11 (2008), 888–909.
[87] J. C. Simo, T. J. R. Hughes, Computational Inelasticity, Springer, Berlin, 1998.
[88] C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, v. III/3, Handbuch der Physik, ed. S. Flu?gge, Springer, New York, 1965.
[89] P. V. Trusov, O. I. Dudar', I. A. Keller, Tenzornaia algebra i analiz, Permskii TU, Perm', 1998.
[90] K. Y. Volokh, “Comments and authors' reply on “Linear stress-strain relations in nonlinearelasticity” by A. Chiskis and R. Parnes (Acta Mech. 146, 109–113, 2001)”, Acta Mech., 171 (2004), 241–245.
[91] G. Weber, L. Anand, “Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids”, Comput. Methods Appl. Mech. Eng., 79 (1990), 173–202.
[92] H. Xiao, “Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain”, Int. J. Solids Struct., 32:22 (1995), 3327–3340.
[93] H. Xiao, O. T. Bruhns, A. Meyers, “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124 (1997), 89–105.
[94] H. Xiao, O. T. Bruhns, A. Meyers, “Hypo-elasticity model based upon the logarithmic stress rate”, J. Elast., 47 (1997), 51–68.
[95] H. Xiao, O. T. Bruhns, A. Meyers, “Strain rates and material spins”, J. Elast., 52 (1998), 1–41.
[96] H. Xiao, O. T. Bruhns, A. Meyers, “Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures”, Arch. Mech., 50:6 (1998), 1015–1045.
[97] H. Xiao, O. T. Bruhns, A. Meyers, “Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress”, Mechanics Research Communications, 25:1 (1998), 59–67.
[98] H. Xiao, O. T. Bruhns, A. Meyers, “Existence and uniqueness of the integrable-exactly hypoelastic equation $\r\tau^*=\lambda(\tr D)I+2\mu D$ and its significance to finite inelasticity”, Acta Mech., 138 (1999), 31–50.
[99] H. Xiao, O. T. Bruhns, A. Meyers, “A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity”, J. Elast., 56 (1999), 59–93.
[100] H. Xiao, O. T. Bruhns, A. Meyers, “The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate”, Proc. R. Soc. Lond. A., 456 (2000), 1865–1882.
[101] H. Xiao, O. T. Bruhns, A. Meyers, “Basis issues concerning finite strain measures and isotropic stress-deformation relations”, J. Elast., 67 (2002), 1–23.
[102] H. Xiao, L. S. Chen, “Hencky's elasticity model and linear stress-strain relations in isotropic finite hyperelasticity”, Acta Mech., 157 (2002), 51–60.
[103] H. Xiao, L. S. Chen, “Hencky's logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity”, Int. J. Solids Struct., 40 (2003), 1455–1463.
[104] H. Xiao, O. T. Bruhns, A. Meyers, “Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky

To content of the issue