.. , A.. , .. , ..

2017, 1, . 59-81


, . $2D$ -, $3D$- - -. . $[111]$ . . , .

:
, , - -, , , -

( PDF)

[1] M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, and K.W. Godfrey, Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2 Ti2 O7 , Phys. Rev. Lett., 79:13, (1997), 25542557.
[2] A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B.S. Shastry, Zero-point entropy in spin ice, Nature (London), 399, (1999), 333335.
[3] S.T. Bramwell and M.J.P. Gingras, Spin Ice State in Frustrated Magnetic Pyrochlore Materials, Science, 294, (2001), 14951501.
[4] M.J. Harris, S.T. Bramwell, P.C.W. Holdsworth, and J.D.M. Champion, Liquid-Gas Critical Behavior in a Frustrated Pyrochlore Ferromagnet, Phys. Rev. Lett., 81:20, (1998), 44964499.
[5] R. Moessner and S.L. Sondhi, Theory of the [111] magnetization plateau in spin ice, Phys. Rev. B, 68:6, (2003), 064411.
[6] S.V. Isakov, K.S. Raman, R. Moessner, and S.L. Sondhi, Magnetization curve of spin ice in a [111] magnetic field, Phys. Rev. B, 70:10, (2004), 104418.
[7] K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, and T. Sakakibara, A New Macroscopically Degenerate Ground State in the Spin Ice Compound Dy2 Ti2 O7 under a Magnetic Field, J. Phys.: Condens. Matter, 14, (2002), L559.
[8] Z. Hiroi, K. Matsuhira, S. Takagi, T. Tayama, T. Sakakibara, Specific Heat of Kagome Ice in the Pyrochlore Oxide Dy2 Ti2 O7, J. Phys. Soc. Jpn., 72:2, (2003), 411418.
[9] R. Higashinaka, H. Fukazawa, and Y. Maeno, Anisotropic release of the residual zero-point entropy in the spin ice compound Dy2 Ti2 O7: Kagome ice behavior, Phys. Rev. B, 68:1, (2003), 014415.
[10] H. Fukazawa, R.G. Melko, R. Higashinaka, Y. Maeno, and M.J.P. Gingras, Magnetic anisotropy of the spin-ice compound Dy2 Ti2 O7, Phys. Rev. B, 65:1, (2002), 054410.
[11] L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, J. Am. Chem. Soc., 57:12, (1935), 26802684.
[12] X. Ke, R.S. Freitas, B.G. Ueland, G.C. Lau, M.L. Dahlberg, R.J. Cava, R. Moessner, and P. Schiffer, Nonmonotonic zero-point entropy in diluted spin ice, Phys. Rev. Lett., 99:13, (2007), 137203.
[13] T. Lin, X. Ke, M. Thesberg, P. Schiffer, R.G. Melko, and M.J.P. Gingras, Nonmonotonic residual entropy in diluted spin ice: A comparison between Monte Carlo simulations of diluted dipolar spin ice models and experimental results, Phys. Rev. B, 90, (2014), 214433.
[14] S. Scharffe, O. Breunig, V. Cho, P. Laschitzky, M. Valldor, J.F. Welter, and T. Lorenz, Suppression of Paulings residual entropy in the dilute spin ice (Dy1?x Yx )2 Ti2 O7, Phys. Rev. B, 92:18, (2015), 180405(R).
[15] Yu.A. Shevchenko, K.V. Nefedev, Y. Okabe, Phys. Rev. E, unpublished.
[16] K. Hukushima and K. Nemoto, Exchange Monte Carlo Method and Application to Spin Glass Simulations, J. Phys. Soc. Jpn., 65, (1996), 16041608.
[17] E. Marinari, Optimized Monte Carlo methods, Advances in Computer Simulation, ed. J. Kertesz and I. Kondor, Springer-Verlag, 1998, 5081.
[18] L.W. Lee and A.P. Young, Single spin- and chiral-glass transition in vector spin glasses in three-dimensions, Phys. Rev. Lett., 90, (2003), 227203.
[19] Y. Sugita and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding, Chem. Phys. Lett., 314, (1999), 141151.
[20] X. Yao, Dilute modulation of spin frustration in triangular Ising antiferromagnetic model: WangLandau simulation, Solid State Commun, 150:34, (2010), 160163.
[21] M Zukovic, M. Borovsky, and A. Bobak, Phase diagram of a diluted triangular lattice Ising antiferromagnet in a field, Phys. Lett. A, 374:41, (2010), 42604264.
[22] A. Peretyatko, K. Nefedev, and Yu. Okabe, Interplay of dilution and magnetic field in the nearest-neighbor spin-ice model on the pyrochlore lattice, Phys. Rev. B, 95:14, (2017), 144410.
[23] Y. Qi, T. Brintlinger, and J. Cumings, Direct observation of the ice rule in demagnetized artificial kagome spin ice, Phys. Rev. B, 77:9, (2008), 094418.
[24] P.W. Kasteleyn, Dimer Statistics and Phase Transitions, J. Math. Phys., 4:2, (1963), 287293.