Far Eastern Mathematical Journal

To content of the issue


On three disjoint domains


L. V. Kovalev

2000, issue 1, Ñ. 3–7


Abstract
The paper deals with the following problem, stated in [Zbl.830.30014] by V. N. Dubinin and earlier, in different form, by G. P. Bakhtina [Zbl.585.30027]. Let $a_0=0, |a_1|=\dots=|a_n|=1, a_k\in B_k\in\overline{\mathbb C}$, where $B_0,\dots,B_n$ are disjoint domains, and $B_1,\dots,B_n$ are symmetric about the unit circle. Find the exact upper bound for $\prod_{k=0}^n r(B_k,a_k)$, where $r(B_k,a_k)$ is the inner radius radius of $B_k$ with respect to $a_k$. For $n\ge3$ this problem was recently solved by the author. In the present paper, it is solved for $n=2$.

Keywords:

Download the article (PDF-file)

References

[1] G. V. Kuz'mina, “Metody geometricheskoj teorii funkcij I, II”, Algebra i analiz, 9:3 (1997), 41–103; 5, 1–50.
[2]A. Yu. Solynin, “Moduli i e'kstremal'no-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86.
[3] V. N. Dubinin, “Simmetrizaciya v geometricheskoj teorii funkcij kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76.
[4] G. P. Baxtina, “O konformnyx radiusax simmetrichnyx nenalegayushhix oblastej”, Sovremennye voprosy veshhestvennogo i kompleksnogo analiza, In-t matematiki AN USSR, Kiev, 1984, 21–27.
[5] G. M. Goluzin, Geometricheskaya teoriya funkcij kompleksnogo peremennogo, 2-oe izd., In. lit., M., 1966.
[6] S. Stoilov, Teoriya funkcij kompleksnogo peremennogo, t. 2, In. lit., M., 1962.
[7] L. V. Kovalev, “O vnutrennix radiusax simmetrichnyx nenalegayushhix oblastej”, Izv. vuzov. Matematika, 2000, ¹ 6, 80–81.
[8] V. N. Dubinin, “Razdelyayushhee preobrazovanie oblastej i zadachi ob e'kstremal'nom razbienii”, Zap. nauchn. semin. LOMI, 168, 1988, 48–66.
[9] V. N. Dubinin, “Metod simmetrizacii v zadachax o nenalegayushhix oblastyax”, Matem. sb., 128:1 (1985), 110–123.
[10] E'. M. Galeev, V. M. Tixomirov, Kratkij kurs teorii e'kstremal'nyx zadach, Izd-vo Mosk. un-ta, M., 1989.
[11] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoj fizike, Fizmatgiz, M., 1962.

To content of the issue