Far Eastern Mathematical Journal

To content of the issue


Optimal control problem for stationary equations of elastic waves diffraction


L. V. Illarionova

2010, issue 1, Ń. 31–40


Abstract
One consider the optimal control problem for stationary equations of elastic waves diffraction on three-dimensional inclusion in unbounded homogeneous medium. The problem is to minimize L2-deviation of pressure field in inclusion from the given. The control is the field source in the exterior medium. The solvability of problem is proved. The algorithm of is proposed.

Keywords:
stationary equations of elastic waves diffraction, optimal control problem, numerical solution

Download the article (PDF-file)

References

[1] V. D. Kupradze, T. G. Gegeliya, M. O. Bashelejshvili, T. V. Burchuladze, Trexmernye zadachi matematicheskoj teorii uprugosti i termouprugosti, Nauka, M., 1976.
[2] S. I. Smagin, Integral'nye uravneniya zadach difrakcii, Dal'nauka, Vladivostok, 1995.
[3] S. I. Smagin, “Ob odnoj sisteme integral'nyx uravnenij teorii difrakcii”, Differenc. uravneniya, 26:8 (1990), 1432–1437.
[4] A. A. Samarskij, Teoriya raznostnyx sxem, Nauka, M., 1977.
[5] G. I. Marchuk, V. I. Agoshkov, Vvedenie v proekcionno-setochnye metody, Nauka, M., 1981.
[6] D. Kolton, R. Kress, Metody integral'nyx uravnenij v teorii rasseyaniya, Mir, M., 1987.
[7] N. E. Ershov, S. I. Smagin, “Priblizhennoe reshenie prostranstvennyx zadach akustiki i uprugosti metodom potencialov”, V sb. Matematicheskie modeli, metody i prilozheniya, Izd-vo XGPU, Xabarovsk, 2002, 45–115.
[8] N. E. Ershov, S. I. Smagin, “Reshenie prostranstvennyx zadach akustiki i uprugosti metodom potencialov”, Differenc. uravneniya, 29:9 (1993), 1517–1525.
[9] L. V. Bloxina, N. E. Ershov, “Chislennoe reshenie integral'nyx uravnenij prostranstvennoj zadachi rasprostraneniya i difrakcii akusticheskix voln”, V sb. Dokl. mezhdunarodnoj konferencii po vychislitel'noj matematike, IM SO RAN, Novosibirsk, 2004, 407–410 .
[10] A. Kirsch, “A weak bang-bang principle for the control of an exterior robin problem”, Applicable Analysis, 13 (1982), 65–75.
[11] R. Kress, W. Rundell, “Inverse scattering for shape and impedance”, Inverse Problems, 2001, no. 17, 1075–1085.
[12] T. S. Angell, A. Kirsch, Optimization methods in electromagnetic radiation, Springer, 2004.
[13] Cao Yanzhao, D. Stanescu, “Shape optimization for noise radiation problems”, Computers and Mathematics with Applications, 2002, no. 44, 1527–1537.
[14] A. Habbal, “Nonsmooth shape optimization applied to linear acoustic”, SIAM Journal on Optimization, 8:4 (1998), 989–1006.
[15] A. A. Goryunov, A. V. Saskovec, Obratnye zadachi rasseyaniya v akustike, Izd-vo MGU, M., 1989.
[16] A. S. Savenkova, “Mul'tiplikativnoe upravlenie v zadache rasseyaniya dlya uravneniya Gel'mgol'ca”, Sib. zhurn. industr. matem., 10:1 (2007), 128–139.
[17] L. V. Illarionova, “Zadacha optimal'nogo upravleniya dlya stacionarnyx uravnenij difrakcii akusticheskix voln”, Zhurn. vych. matem. i matem. Fiz., 48:2 (2008), 297–308.

To content of the issue