Far Eastern Mathematical Journal

To content of the issue


Inverse problem of identification of the diffusion coefficient in diffision-reaction equation


I. S. Vakhitov

2010, issue 2, Ñ. 93–105


Abstract
The solvability and uniqueness of inverse extremum problem of identification of the diffusion coefficient in a two-dimensional diffusion-reaction equation are proved. The numerical algorithm of solving the inverse problem is developted and realized. The results of numerical experiments are discussed.

Keywords:
elliptic equation, identification problem, diffusion coefficient, Newton method, uniqueness

Download the article (PDF-file)

References

[1] K. A. Lur'e, Optimal'noe upravlenie v zadachax matematicheskoj fiziki, Nauka, M., 1975, 480 s.
[2] S. Ya. Serovajskij, Optimizaciya i differencirovanie, t. 1, Minimizaciya funkcionalov. Stacionarnye sistemy, Print-S, Almaty, 2006, 602 s.
[3] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 1997, no. 14, 995–1013.
[4] G. V. Alekseev, E. A. Kalinina, “Identifikaciya mladshego koe'fficienta dlya stacionarnogo uravneniya konvekcii-diffuzii-reakcii”, Sib. zhurn. industr. matem., 10:1 (2007), 3–16.
[5] Runsheng Yang Yunhua Ou, “Inverse coefficient problems for nonlinear elliptic equations”, ANZIAM, 49:2 (2007), 271–279.
[6] Guy Chavent, Karl Kunisch, “The output least squares identifiability of the duffusion coefficient from an $H^1$-observation in a 2-D elliptic equation”, ESAIM: Control, Optimization and Calculus of Variations, 2002, no. 8, 423–440.
[7] Yee Lo Keung, Jun Zou, “Numerical identification of parametersin parabolic system”, Inverse Problems, 1998, no. 14, 83–100.
[8] Ian Knowles, “A variational algorithm for electrical impedance tomography”, Inverse Problems, 1998, no. 14, 1513–1525.
[9] G. V. Alekseev, “Razreshimost' obratnyx e'kstremal'nyx zadach dlya stacionarnyx uravnenij teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991.
[10] C. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluids”, J. Inv. Ill-Posed Problems, 9:5 (2001), 435–468.
[11] G. V. Alekseev, “Obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teorii massoperenosa”, Zh. vych. matem. i mat. fiz., 42:3 (2002), 380–394.
[12] G. V. Alekseev, “Edinstvennost' i ustojchivost' v koe'fficientnyx obratnyx e'kstremal'nyx zadachax dlya stacionarnoj modeli massoperenosa”, Dokl. AN, 416:6 (2007), 750–753.
[13] G. V. Alekseev, “Koe'fficientnye obratnye e'kstremal'nye zadachi dlya stacionarnyx uravnenij teplomassoperenosa”, Zhurn. vychisl. matem. matem. fiziki, 47:6 (2007), 1055–1076.
[14] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Zadachi identifikacii dlya stacionarnoj modeli massoperenosa”, Prikl. mex. texn. fiz., 49:4 (2008), 24–35.
[15] G. V. Alekseev, D. A. Tereshko, Analiz i optimizaciya v gidrodinamike vyazkoj zhidkosti, Dal'nauka, Vladivostok, 2008.
[16] A. D. Ioffe, V. M. Tixomirov, Teoriya e'kstremal'nyx zadach, Nauka, M., 1974, 240 s.

To content of the issue