Far Eastern Mathematical Journal

To content of the issue


The uniqueness of quasistatic problems of creep forming


Bormotin K. S.

2013, issue 1, Ñ. 3-14


Abstract
General statements of direct and inverse problems of creep forming in the form of quasistatic deformation taking into account both infinitesimal deformations and geometrical nonlinearity are given. Such statements allow the author to prove the uniqueness of creep forming problems using the sufficient conditions for uniqueness of the boundary-value problems.

Keywords:
problems of creep forming, variational principles, quasistatic deformation, uniqueness

Download the article (PDF-file)

References

[1] I. A. Banshchikova, B. V. Gorev, I. V. Sukhorukov, “Dvumernye zadachi formoobrazovaniia sterzhnei v usloviiakh polzuchesti”, Prikladnaia mekhanika i tekhnicheskaia fizika, 43:3 (2002), 129–139.
[2] I.Iu. Tsvelodub, Postulat ustoichivosti i ego prilozheniia v teorii polzuchesti metallicheskikh materialov, IGiL SO AN SSSR, Novosibirsk, 1991.
[3] I.Iu. Tsvelodub, “Nekotorye geometricheski nelineinye zadachi formoizmeneniia neuprugikh plastin i pologikh obolochek”, Prikladnaia mekhanika i tekhnicheskaia fizika, 46:2 (2005), 151–157.
[4] R. Hill, “On uniqueness and stability in the theory of finite elastic strain”, J. Mech. Phys. Solids., 5:4 (1957), 229–241.
[5] C. H. Korobeinikov, Nelineinoe deformirovanie tverdykh tel, SO RAN, Novosibirsk, 2000.
[6] K. S. Bormotin, “Variatsionnye metody resheniia obratnoi zadachi optimal'nogo deformirovaniia v polzuchesti”, Informatika i sistemy upravleniia, 2(28) (2011), 106–116.
[7] Iu.N. Rabotnov, Polzuchest' elementov konstruktsii, Izd-vo “Nauka”, M, 1966.
[8] K. Vasidzu, Variatsionnye metody v teorii uprugosti i plastichnosti, Per. s angl., Mir, M, 1987.
[9] A. A. Il'iushin, Plastichnost', Gosudarstvennoe izdatel'stvo Tekhniko-teoreticheskoi literatury, M, 1948.

To content of the issue