Far Eastern Mathematical Journal

To content of the issue


The stability estimates in two-dimensional cloaking problem


G. V. Alekseev, A. V. Lobanov

2014, issue 2, Ñ. 127–140


Abstract
We consider control problem for 2-D model of scattering E-polarized electromagnetic waves in unbounded medium containing dielectric obstacle with coated boundary. This problem arises when creating means of cloaking material objects. The role of control in control problem under study is played by boundary conductivity. Solvability of direct and control problems is proved and the optimality system is deduced. The uniqueness and stability of optimal solutions with respect to certain perturbations of both cost functional and incident wave are established.

Keywords:
scattering problem, transmission conditions, boundary conductivity, control problem, optimality system, stability estimates

Download the article (PDF-file)

References

[1] J. B. Pendry, D. Shurig and D. R. Smith, “Controlling electromagnetic fields”, Science., 312:1 (2006), 1780–1782.
[2] H. Chen, B. I. Wi, B. Zhang, J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak”, Phys. Rev. Lett., 99 (2007), 063903.
[3] S. A. Cummer, B. I. Popa, D. Schurig et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Lett., 100:2 (2008), 024301.
[4] G. V. Alekseev, V. G. Romanov, “Ob odnom klasse nerasseivayushhix akusticheskix obolochek dlya modeli anizotropnoj akustiki”, Sib. zhurn. industr. matem., 14:2 (2011), 15–20.
[5] A. E. Dubinov, L. A. Mytareva, “Maskirovka material'nyx tel metodom volnovogo obtekaniya”, Uspexi fiz. nauk., 180:5 (2010), 475–501.
[6] Yu. I. Bobrovnickij, “Nauchnye osnovy akusticheskogo stelsa”, DAN, 442:1 (2012), 41–44.
[7] G. V. Alekseev, “Optimizaciya v zadachax maskirovki material'nyx tel metodom volnovogo obtekaniya”, DAN, 449:6 (2013), 652–656.
[8] G. V. Alekseev, “Cloaking via impedance boundary condition for 2–D Helmholtz equation”, Appl. Anal, 93:2 (2014), 254–268.
[9] G. V. Alekseev, R. V. Brizickij, V. G. Romanov, “Ocenki ustojchivosti reshenij zadach granichnogo upravleniya dlya uravnenij Maksvela pri smeshannyx granichnyx usloviyax”, DAN, 447:1 (2012), 7–12.
[10] G. V. Alekseev, R. V. Brizickij, “Ocenki ustojchivosti reshenij zadach upravleniya dlya uravnenij Maksvela pri smeshannyx granichnyx usloviyax”, Differencial'nye uravneniya, 49:8 (2013), 993–1004.
[11] L. Beilina, M. V. Klibanov, Approximate global convergence and adaptivity for coefficient inverse problems, Springer, New York, 2012, 407 pp.
[12] L. Beilina, M. V. Klibanov, “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, J. Inverse Ill-Posed Problems, 20:4 (2012), 513–565.
[13] A. S. Il'inskij, V. V Kravcov, A. G Sveshnikov, Matematicheskie modeli e'lektrodinamiki, Vysshaya shkola, Moskva, 1991.
[14] M. A. Leontovich, Issledovaniya po rasprostraneniyu radiovoln, ZhE'TF, 1948.
[15] F. Caconi, D. Colton, P. Monk, “The inverse electromagnetic scattering problem for a partially coated dielectric”, J. Comp. Appl. Math, 204:2 (2007), 256–267.
[16] G. V. Alekseev, Optimizaciya v stacionarnyx zadachax teplomassoperenosa i magnitnoj gidrodinamiki, Nauchnyj Mir, Moskva, 2010.
[17] J. M. Melenk, S. Sauter, “Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions”, Math. Comp, 79 (2010), 1871–1914.
[18] G. V. Alekseev, “Zadachi upravleniya dlya stacionarnyx uravnenij magnitnoj gidrodinamiki”, DAN, 395:3 (2004), 322–325.

To content of the issue