Ricci tensor of isotropic inhomogeneous temperature deformation |
Pestov K.N. |
2025, issue 2, P. 244–250 DOI: https://doi.org/10.47910/FEMJ202517 |
Abstract |
| An exact nonlinear expression is obtained for the components of the Ricci tensor and scalar curvature for isotropic inhomogeneous temperature deformation. The conditions in the field of temperature variation are given, under which linearization of the components of the Ricci tensor is possible. The condition for the Euclidean nature of the deformed state is obtained. |
Keywords: Ricci tensor, scalar curvature, temperature deformations. |
Download the article (PDF-file) |
References |
| [1] Guzev M.A., Myasnikov V.P., “Neevklidova struktura polya vnutrennikh napryazhenii sploshnoi sredy”, Dal'nevost. matem. zhurn., 2:2, (2001), 29–44. [2] Myasnikov V.P., Guzev M.A., “Geometricheskaya model' defektnoi struktury uprugoplasticheskoi sploshnoi sredy”, Prikl. mekh. tekhn. fiz., 40:2, (1999), 163–173. [3] Bilby B.A., Bullough R., Smith E., “Continuos distributions of dislocations: a new application of the methods of non-Reimannian geometry”, Proc. Roy. Soc. A., 231, (1955), 263–273. [4] Kondo K., “On the geometrical and physical foundations of the theory of yielding”, Proc. 2nd Japan Nat. Congr. Appl. Mech. Tokyo, 231, (1953), 41–47. [5] Godunov S.K., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978, 304 s. [6] Dubrovin B.A, Novikov S.P, Fomenko A.T, Sovremennaya geometriya: Metody i prilozheniya, Nauka, Gl. red. fiz.-mat. lit., M., 1986. [7] Guzev M.A., Lyubimova O.N., Pestov K.N., “Uravneniya Bel'trami – Mitchella v neevklidovoi modeli sploshnoi sredy”, Dal'nevost. matem. zhurn., 24:2, (2024), 178–186. Mi http://mi.mathnet.ru/dvmg542, doi https://doi.org/10.47910/FEMJ202416. [8] Norden A.P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976. [9] Boli B., Ueiner Dzh., Teoriya temperaturnykh napryazhenii, Mir, M., 1964. |